Adaptive Protocols for Lake Okeechobee Operations

Recap: Interim Solutions for Improving Performance of the Central & Southern Florida System

Water Supply Augmentation – Supplemental Environmental Flows

Water Resources Advisory Commission Special Issues Workshop July 10, 2012

Calvin Neidrauer, P.E. Susan Gray, Ph.D.

What are the Adaptive Protocols for Lake Okeechobee Operations?

- Operating Guidance used by SFWMD to make release recommendations to the USACE
- Clarifies release amounts that are within the "flexibility" provided in the USACE's Lake Okeechobee Regulation Schedule (2008 LORS)
- SFWMD public process began in August 2009
 - final document accepted by SFWMD Governing Board in September 2010

"Boundaries" of the 2010 Adaptive Protocol Revisions

- Identified opportunities for "win-win" or "win-neutral" improvements for resources such as
 - environmental deliveries to the estuaries
 - water supply for the STAs
 - Lake Okeechobee MFL
 - water supply deliveries to permitted users
- Focus where the 2008 LORS flexibility allows a range of releases "up to" an upper limit, or where no release amount is defined
- Provide guidance on releases to the estuaries in the Low,
 Base Flow and Beneficial Use subbands of LORS-08

Strategies Analyzed Since Summer 2011

- 1. LORS-2008 flexibility (to improve storage capability)
 - Reduced discharge during stage recessions
 - Relax peak stage constraint
 - etc
- 2. Adaptive Protocol mods (to improve CE salinity)
 - Relax Tributary Hydrologic Condition
 - Allow releases in Water Shortage Management Band
 - etc
- 3. LOSA water shortage management (increase cutbacks and cutback sooner)
- 4. Water Supply Augmentation

Water Supply Augmentation-Supplemental Environmental Flows (WSA-SEF)

- Potential <u>interim solution</u> until CERP storage areas are constructed and operable
- WSA concept is to allow EAA runoff to flow back to Lake Okeechobee during specific conditions in order to increase water storage and supply capability
- Not the same as historical flood control "backpumping"
 - WSA has much lower frequency, volumes and loads
 - EAA BMPs have considerably improved water quality
- Not the same as historical water supply "backpumping"
 - WSA can benefit multiple uses, <u>primarily environmental</u> water supply

What-if Scenario #4: WSAopt2 Water Supply Augmentation (WSA)

Lake Okeechobee Water Supply Augmentation Zones for Scenarios WSAopt2 and EWSA6

ONE POSSIBLE MODIFICATION TO THE Flowchart to Guide Recommendations for Lake Okeechobee Releases to the Caloosahatchee Estuary for 2008 LORS Baseflow & for Environmental Water Supply

¹The 2008 LORS Release Guidance (Part D) can suggest baseflow releases in the Intermediate, Low, or Baseflow Subbands.

²Estuary "needs" water when the 30-day moving average salinity at I-75 bridge is projected to exceed 5 practical salinity units (psu) within 2 weeks.

³LOWSM = Lake Okeechobee Water Shortage Management.

⁴Tributary Hydrologic Condition (THC) is based on classification of Lake Okeechobee Net Inflow and Palmer Index.

⁵Can release less than the "up to" limit if lower release is sufficient to reach or sustain desired estuary salinity; cfs = cubic feet per second.

⁶After reviewing conditions in Water Conservation Areas (WCAs), Stormwater Treatment Areas (STAs), ENP, St. Lucie Estuary and Lake Okeechobee.

⁷Should this condition be reached, the Governing Board will be briefed at their next regularly scheduled meeting.

Performance Measures used for Analysis

A Performance Measure (PM) is a key summary statistic that represents an important characteristic of a system. PMs are used in modeling analyses to make relative comparisons among alternative plans or what-if scenarios.

- 1. LOK: Maximum Stage
- 2. LOK: # of days above elevation 17.25 ft, NGVD*
- 3. LOK: # of MFL Rule Exceedances*
- 4. LOSA: # of months of significant water shortage cutbacks*
- 5. CE: # of months of high salinity (> 10 psu) at Val-I75*
- 6. CE: # of months of high salinity (> 10 psu) at Ft. Myers
- 7. SLE: # of months of damaging high discharge > 2000 cfs*
- 8. CE: # of months of damaging high discharge > 2800 cfs*

^{*} Same PMs used for development of 2010 Adaptive Protocols

Performance Summary Table									
		PERFORMANCE SUMMARY							
	WSE	LORS08	AP5.50	TA465	EWS3	LP3334	WSAopt2		
LOK: Peak stage (ft)	18.51	17.25	17.31	17.30	17.28	17.32	17.45		
LOK: Days>17.25'	483	0	11	10	3	11	16		
LOK: MFL Exc	4	10	7	6	12	7	3		

36

53

168

77

89

TA465

-0.01

-1

-1

-1

-5

5

-2

-8

PERFORMANCE CHANGES RELATIVE TO AP5.50

47

56

160

79

97

LP3334

0.01

0

0

10

-2

-3

0

0

55

0

48

77

89

EWS3

-0.03

-8

5

18

-58

-115

-2

-8

25

43

156

79

101

WSAopt2

0.14

5

-4

-12

-15

-7

0

4

37

58

163

79

97

AP5.50

17.31

11

7

37

58

163

79

97

LOSA: Cutback Mos

CE-I75: Mos>10psu

CE-FM: Mos>10psu

SLE: Mos>2000cfs

CE: Mos>2800cfs

26

118

200

72

95

LOK: Peak stage (ft)

LOSA: Cutback Mos

CE-I75: Mos>10psu

CE-FM: Mos>10psu

SLE: Mos>2000cfs

CE: Mos>2800cfs

LOK: Days>17.25'

LOK: MFL Exc

42

79

176

78

88

EWSA6

17.28

3

5

33

0

118

78

97

EWSA6

-0.03

-8

-2

-4

-58

-45

-1

0

Short Summary of Tests

- Combinations of LORS and AP refinements show small improvements for most of the key measures of performance
- Further marginal improvement if Lake stages are allowed to peak slightly higher
- Increasing cutbacks per the Lake O water shortage management plan (LOWSM) worsens LOSA performance and does not significantly improve performance for the Lake O MFL or CE high salinity
- Relatively larger improvements from Water Supply Augmentation & Supplemental Environmental Flows to the Caloosahatchee Estuary (WSA-SEF)

Simulation Names

<u>ALT</u>	<u>Name</u>	<u>Current Test Run Descriptions</u>
0	WSE	WSE with LOWSM
1	LORS08	2008-LORS with LOWSM
2	AP5.50	2010-AP (50% red in ZoneD dry seas releases & AP Flowchart with "LowChance" = 50%)
3	EWS3	AP550 with CalEst_EWS=1100cfs, EWS in LOWSM w/no CB, SalThresh=4, no THC, lowchance=100%, BSflow=450cfs.
4	EWS3_1	AP550 with CalEst_EWS=800cfs, EWS in LOWSM w/no CB, SalThresh=4, no THC, lowchance=100%, BSflow=650cfs.
5	EWS3_2	AP550 with CalEst_EWS=650cfs, EWS in LOWSM w/no CB, SalThresh=4, no THC, lowchance=100%, BSflow=650cfs.
6	EWS3_3	AP550 with CalEst_EWS=450cfs, EWS in LOWSM w/no CB, SalThresh=4, no THC, lowchance=100%, BSflow=650cfs.
7	EWS3_4	AP550 with CalEst_EWS=450cfs, EWS in LOWSM w/no CB, SalThresh=4, no THC, lowchance=100%, BSflow=450cfs.
8	E33WSM11	EWS3_3 with LOWSM WST Line raised (Low pt from 10.5 to 11.0)
9	EWSA6	WSA(<wst+0.5=1unit,<wst=2units,wca3a-2.5,slonin<=norm) &="" cb,="" ews="" in="" lowsm="" no="" salthresh="3," td="" thc,<="" w=""></wst+0.5=1unit,<wst=2units,wca3a-2.5,slonin<=norm)>
		no THC, lowchance=100, Bsflow=450cfs.

Frequency & Duration of High Salinity Events (>10 psu) at Ft.Myers

■ No. of Cutback Months (>=7days,>=18kaf,>=10%)

How could WSA affect Lake Okeechobee & Caloosahatchee Estuary Water Quality?

- Staff analyzed WSA2 scenario using the Lake Okeechobee Water Quality Model (LOWQM)
 - Close look at TP and TN
- Results show little, if any adverse impacts from WSA
- Increases Lake inflow load for TP (2%) and TN (6%)
- However, little to no change in in-lake TN or TP concentrations due to internal processes
- 8-9% increase in loads discharged at S-77 due solely to increased Lake O release volumes, not from changes in Lake O water quality

Comparison of Average Annual Simulated Lake Inflows

Simulated Lake Okeechobee Inflows

LOWOM simulation period: 1973-2000

Comparison of Average Annual Simulated Phosphorus Loads

Simulated Phosphorus Inflow Loads Lake Okeechobee

LOWOM simulation period: 1973-2000

Comparison of Average Annual Simulated Nitrogen Loads

Simulated Nitrogen Inflow Loads Lake Okeechobee

LOWOM simulation period: 1973-2000

Nitrogen and Phosphorus Loads Discharged from Lake O via S-77 to the Caloosahatchee Estuary

How could WSA affect the Water Conservation Areas & Everglades National Park?

- Staff analyzed WSA scenarios using the South Florida Water Management Model (SFWMM)
 - Focused on WCA-2A, WCA-3A and ENP
- Preliminary SFWMM results show
 - Slightly lower stages in WCAs during some of the WSA periods, but similar hydropatterns
 - Reduced flood control discharges (2%) to ENP's Shark Slough
 - No change in flows to meet ENP rain-driven flow component
- A closer review by Everglades staff highlighted a few accelerated dryout events in northern WCA-3A and WCA-2A
 - Further restrictions on WSA operation can be designed to minimize these events

June 2012 Governing Board Direction

- Water Supply Augmentation or Supplemental Environmental Flows shows the most benefits to the estuary without impacting other users
- Continue to refine to address concerns raised by stakeholders on water quality and flows to the Everglades
- Develop operational triggers
- Develop sunset provisions

Issues of Concern with WSA

- Lake Okeechobee
 - Algal blooms
 - Hypoxia and fish kills
 - Other contaminants
- Estuaries
 - Nutrient loads
- Everglades
 - Decrease in flow volumes

Possible Lake Okeechobee Monitoring Plan Components

- Flow study
- Water quality monitoring
 - temperature, dissolved oxygen, pH, conductivity, CHLA2, COLOR, TKN, NH4, NOX, TSS, TPO4, OPO4, ametryn, atrazine, atrazine desethyl, atrazine desisopropyl, bromacil, metolachlor, simazine, and trace mercury
- Ecological monitoring
 - Submerged aquatic vegetation
 - Chronic effluent toxicity study

Possible Operational Constraints

- Lake Okeechobee
 - Chlorophyll a > 40 u/ml
- Estuaries
 - ??? Load limits ???
- Everglades
 - WCA stages
 - Limit WSA if water levels are forecasted to fall below ground, or are forecasted to cause an MFL exceedance.

Possible Sunset Provisions

- Construction of C-43 Reservoir
- Significant completion of repairs to Herbert Hoover Dike
- Construction of Central Everglades Project
- Others?

Adaptive Protocols For Lake Okeechobee Operations

Interim Solutions for Improving Performance of the Central & Southern Florida System

Questions & Discussion

Thank You